

PH Fighters and acid base disorders by Dr. Shuzan Ali Mohammed Assistant Professor of Medical Biochemistry & Molecular Biology

Shuzan Ali 2019

Learning objectives: You should be able to:

- •Discuss PH
- •Discuss different types of buffers
- •Determine regulation of PH
- •Define acidosis and alkalosis and identify their types, causes and compensation
- •Describe anion gap

RECOMENDED TEXT BOOKS AND REFERENCES FOR SYSTEM MODULES

- Lecture notes authorized and edited by the Medical Biochemistry and Molecular Biology Department
- Lippincott's Illustrated Biochemistry Reviews (3rd edition), 2009.
- Harper's Illustrated Biochemistry, 29th edition (2009).
- Guyton & Hall, Textbook of Medical Physiology 11th edition, 2006.
- Sherwood L. Human Physiology from Cells to Systems, 5th edition, 2007.

Regulation of pH:

There are 3 lines of defense (pH fighters) which regulates pH:

- The 1st line is blood buffers
- The 2nd line is the respiratory regulation
- The 3rd line is the renal regulation

I. Regulation of blood pH by buffers:

- <u>Buffers</u> are solutions which resist any changes in their pH when a moderate amount of an acid or alkali is added to them. <u>Composed of</u> mixtures of either:
- Weak acid and its salt with a strong base e.g. H₂CO₃ and NaHCO₃ (bicarbonate system) or acetic acid and sodium acetate.
- 2. *Weak base* and its salt with a strong acid e.g. ammonium hydroxide and ammonium chloride.

Types of buffers:

1. Physiological buffer system: Bicarbonate, phosphate and protein systems most important.

a. Bicarbonate system: BHCO₃/H₂CO₃

- Normal plasma bicarbonate level is 24 mmol/L, normal carbonic acid is 1.2 mmol/L. Bicarbonate to carbonic acid ratio is 20:1. B is Na⁺ if extracellular or K⁺ if intracellular.
- Bicarbonate system is 65% of buffering system capacity in plasma and 40% of buffering action in the whole body. Bicarbonate is regulated by kidney (metabolic component) while carbonic acid is regulated by respiration (Hespicator B⁺ coll Component); CO₃ + BCl

 $Na^+ + OH^- + H^+ + HCO_3^- \rightarrow NaHCO_3 + HOH$

B. phosphate system:

dibasic monohydrogen phosphate

B₂**HPO**₄

BH₂PO₄

^⁴_basic phosphate

acid phosphate

monobasic dihydrogen phosphate

• It is mainly an intracellular buffer. The ratio between phosphates and phosphoric acid is 4. Phosphate buffer system is effective at a wide pH range because it has more than one ionizable group $e_{+}g_{+}$ $H_{3}PO_{4} \rightarrow H^{+}H_{2}PO_{4}$

 $H_2PO_4^- \rightarrow H^+ + HPO_4^{-2} \left(\frac{Na_2HPO_4}{NaH_2PO_4}\right)$

 $HPO_4^{-2} \rightarrow H^+ + PO_4^{-3}$

- HCL is neutralized by basic phosphate: $H^+ + Cl^- + B^+ + BHPO_4^- \rightarrow BH_2PO_4 + B^+ + Cl^-$
- NaOH is neutralized by acid phosphate: $Na^{+} + 0H^{-} + B^{+} + H_2P04^{-} \rightarrow NaH_2P04 + B^{+} + 0H^{-}$ $Na^{+} + 0H^{-} + H^{+} + BHP04^{-} \rightarrow NaBHP04 + H^{+} + 0H^{-}$

C. Protein system protein ate saltsH = protein ate mate saltsH = protein ate mate salts

if an acid is added, it is neutralized by proteinate salt:

 $H^+ + Cl^- + B^+ + proteinate \rightarrow H. proteinate + B^+ + Cl^-$

if an alkali is added, it is neutralized by proteinic acid:

 $Na^+ + OH^- + H^+ + proteinate \rightarrow Na \ proteinate + H^+ + OH^-$

II. Blood Buffers:

 Blood buffers include all the physiological buffer system in addition to hemoglobin and oxyhemoglobin the in red blood cells.

A.Hemoglobin buffer: $\frac{h}{h}$

KHb HHb

B. Oxyhemoglobin: $\frac{KHbO_2}{HHbO_2}$

•The 2 systems act together to get rid of CO₂ produced as metabolites from tissues. Blood buffers keep the pH of blood fixed at 7.4 \pm 0.05

•So, fatal academia or alkalemia does not occur.

Buffers	Extracellular fluid	Intracellular fluid	Erythrocyte fluid
Bicarbona te system	<i>NaHCO</i> 3/ <i>H</i> 2CO3	<i>KHCO</i> 3/H2CO3	<i>KHCO</i> 3/H2CO3
Phosphate system	Na2HPO4 NaH2PO4	<u>K2HPO4</u> <u>KH2PO4</u>	K2HPO4 KH2PO4
Proteinate system	Na albumin/Halbumin	Kproteinate H proteinate	KHb HHb Hemoglobin system

Although the buffer system can respond immediately to the addition of acid or alkali, this system cannot eliminate them. So, the respiratory and renal regulations are very essential for the final elimination of acids.

Actions of hemoglobin:

At rest, about 200 ml of CO_2 is produced per minute in tissues. The CO_2 is carried by the following 3 ways:

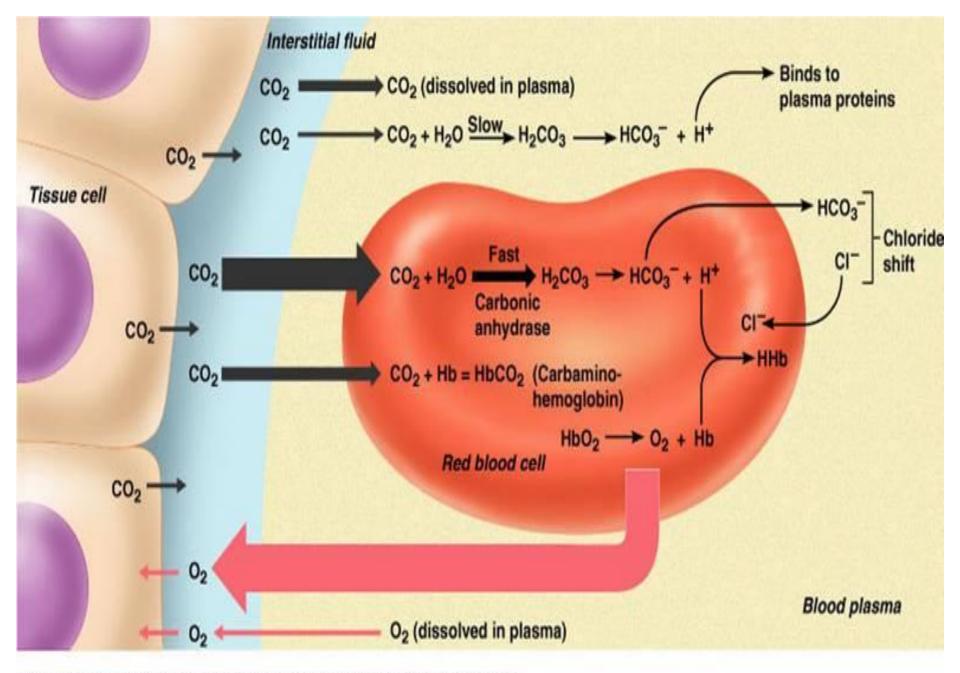
1. Dissolved form: 10%

2. Isohy@ic trlippoff2@@32 #993 as the dissolved but is buffered by deoxyHb in tissues & diffuse to plasma
 3. Carbamino-hemoglobin: 15% as carbaminoHb
 R-NH + CO2 → R-NH
 Hb generates or the alkali reserve by Carbonic anhydrase
 At tissues;

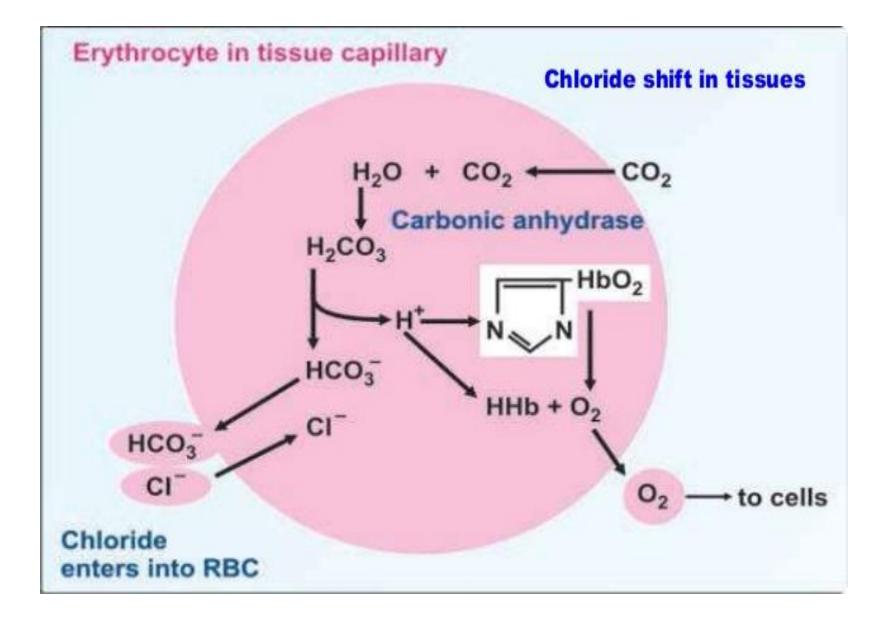
• HCO3⁻

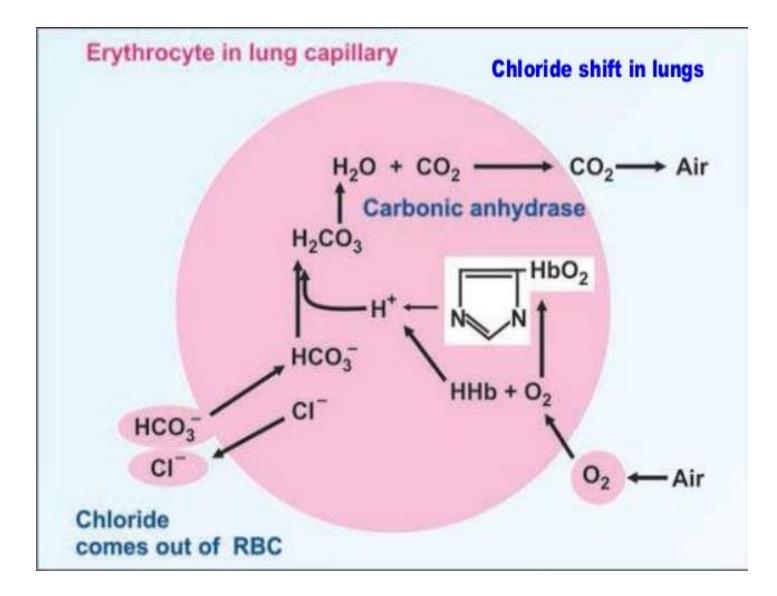
 $CO_{2} + H_{2}O \rightarrow H_{2}CO_{3}$ $H_{2}CO_{3} \rightarrow HCO_{3}^{-} + H^{+}$ $H^{+} + Hb^{-} \rightarrow HHb$

• When the blood reaches the lung, the reverse occurs. The following steps show how O_2 can combine with hemoglobin and CO_2 is released through the expiration.


 $HHb + O_2 \rightarrow HbO_2 + H^+$

 $HCO_3^- + H^+ \rightarrow H_2CO_3$


• N.B. the bicarbonate reenters the erythrocytes by reversal of chloride shift

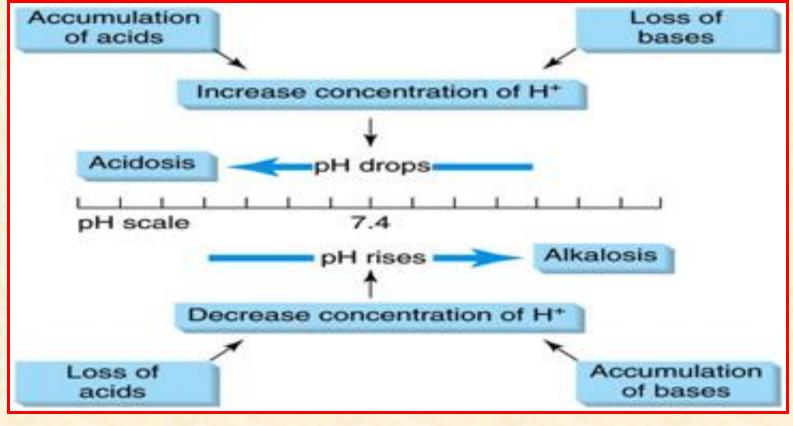

 $H_2CO_3 \rightarrow H_2O + CO_2$

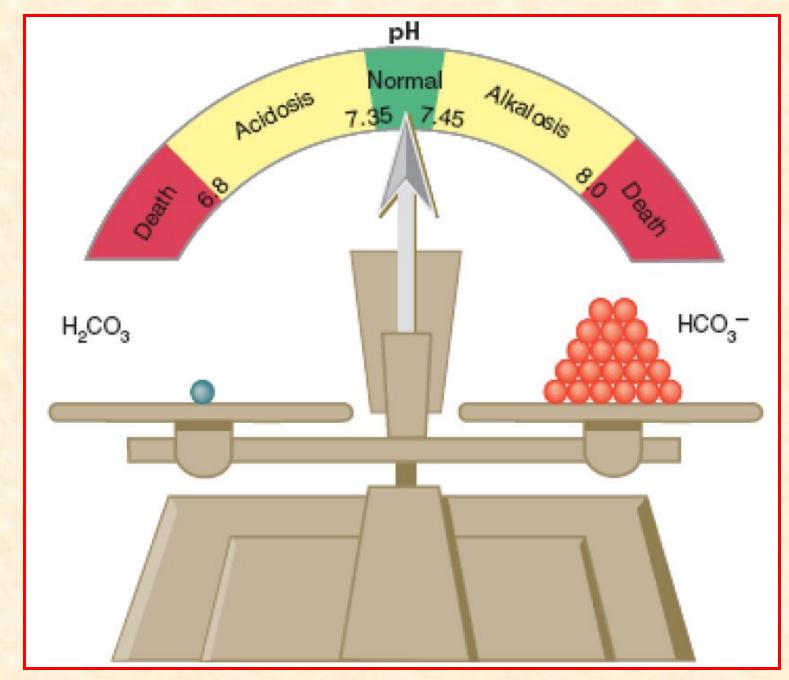
 Carbonic anhydrase (carbonate dehydratase) activity increases in acidosis and decreases in alkalosis (low hydrogen ion concentration).

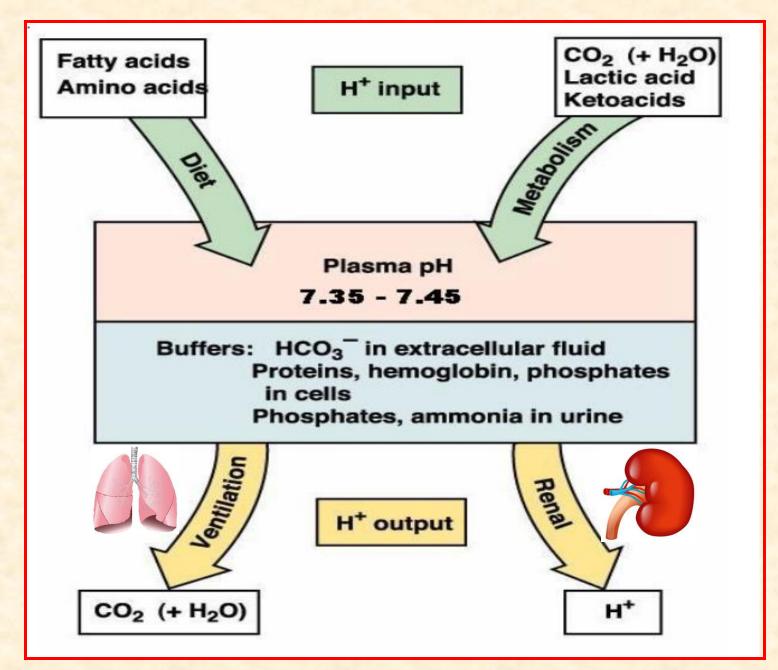
(a) Osygem release and carbon dioxide pickup at the desugsu.edu.eg

II. Respiratory regulation of pH

 This is the 2nd line of defense against the change in pH. When there is fall in pH (acidosis), the chemo receptors in the respiratory center are stimulated resulting in hyperventilation that eliminates more CO₂, thus lowering H₂CO₃ level i.e.


↑H2CO3 (acidosis)→stimulates chemoreceptors→hyperventillation (↑loss of CO2)


II. Renal regulation of pH


(see the renal module in the third semester)

Normal values;

- Normal pH range 7.35-7.45.
- The normal plasma bicarbonate (HCO₃-) level is 24 mmol/L
- The normal carbonic acid (H_2CO_3) is 1.2 mmol/L.
- The bicarbonate / carbonic acid ratio is equal to 20:1.

Point	Acio	dosis	Alkalosis		
Def.	The blood pH tends to				
	decı	rease	increase		
	due to formation of				
	excessi	ve acids	excess	alkali	
	at a rate exceeding the capacity of the body to neutralize & eliminate				
Types	Respirato ry	Metabolic	Respirator y	Metabolic	
Causes	CO ₂ retention	↓ blood HCO ₃ -	↑ CO ₂ loss	↑ blood HCO ₃ -	

	Poi	nts	cidosis	kalosis
	Cause		CO2 retention	excess CO ₂ loss
•		S	 Bronchial asthma Chronic bronchitis Emphysema Pneumonia Respiratory center inhibition Asphyxia 	 Fever Encephalitis High altitude Late stage of salicylate (aspirin) poisoning Hysterical hyperventilation
	M e c h a ni	Un co m pe ns at ed	• \downarrow HCO ₃ ⁻ /H ₂ CO ₃ ratio while HCO ₃ ⁻ remains as it is. \rightarrow "uncompensated respiratory acidosis" or "acidemia".	 ↑ HCO₃⁻/H₂CO₃ (HCO₃- remains unchanged) → uncompensated respiratory alkalosis The alkali reserve is normal (no change in bicarbonate)
	s m	Co m pe ns at ed	The kidney will reabsorb more (HCO_3^{-}) , till the ratio HCO_3^{-} $/H_2CO_3$ reaches 20:1 \rightarrow compensated respiratory acidosis	Renal tubular reabsorption of HCO_3^- is inhibited [$\uparrow K^+ \& HCO_3^-$ excretion of in urine (alkaline)] till HCO_3^-/H_2CO_3 ratio reaches 20:1 \rightarrow compensated respiratory alkalosis

Points		Respiratory acidosis	Respiratory alkalosis
Uncompensat ed (disturbed	HCO ₃ -	Normal	Normal
HCO ₃ -	H ₂ CO ₃	Increased	Low
$/H_2CO_3$ ratio)	рН	Decreased	Increased
	•		
Compensated (normal	HCO ₃ -	Increased	Decreased
HCO ₃ -	H ₂ CO ₃	Increased	Low
$/H_2CO_3$ ratio)	рН	Decreased	Increased

Poi s	nt	cidosis	kalosis	
Ca	acids: • Muscular exercise • Ketosis • Diet producing acids • Administration of NH ₄ Cl 3. Increased loss of bases: • Diarrhea • Vomiting (low intestinal obstruction) • Hyperkalemia (Addison's disease) 2. Failure of excretion of acids: • Chronic renal failure		 ↑ blood HCO₃- 1. Increased absorption of bases: Intake of high vegetables & fruits Intake of drugs containing citrate and bicarbonate salts (anti-acids) 2. Increased loss of acids: Prolonged suction of gastric juice Vomiting (high intestinal obstruction) Hypokalemia (Cushing's syndrome) "paradoxical alkalosis" (blood alkaline and urine acidic). 	
M e c h a	U n c m p	HCO ₃ ⁻ is decreased & the H ₂ CO ₃ remains as it is, "uncompensated metabolic acidosis" or "acidemia"	Increased HCO_3^- & normal H_2CO_3 . So, the ratio is increased "uncompensated metabolic alkalosis"	

Points		Metabolic acidosis	Metabolic alkalosis
Uncompensat ed (disturbed	HCO ₃ -	Low	increased
HCO_3^{-} /H ₂ CO ₃ ratio)	H ₂ CO ₃	Normal	Normal
	рН	Decreased	Increased
Compensated (normal	HCO ₃ -	Low	Increased
HCO ₃ -	HCO ₃ ⁻ H ₂ CO ₃ Decreased	increased	
$/H_2CO_3$ ratio)	рН	Decreased	Increased

B. Metabolic acidosis:

- **Causes:** It usually results from decreased blood HCO₃⁻ as in; **1. Excess production of acids:**
- Muscular exercise: with production of excess lactic acid.
- Ketosis: in diabetes mellitus (DM), ketone bodies will increase in blood; acetoacetic and β-hydroxybuteric acids.
- **Diet:** different foodstuffs yield excessive amount of acids from their metabolism like; pyruvic, lactic, sulfuric, phosphoric and nucleic acids.
- Administration NH₄Cl: Cl⁻ will replace bicarbonate decreasing it while NH₄⁺ is transformed into urea.

2. Failure of excretion of acids:

- In chronic renal failure; fatty acid, uric acid and phosphoric acid accumulate. The kidney fails to excrete these acids.
- **3. Excessive loss of bases:**
- Diarrhea: intestinal juices are alkaline rich in Na⁺ and K⁺ bicarbonate
- Vomiting: due to low intestinal obstruction.
- Hyperkalemia (e.g. Addison's disease);
- increased renal tubular reabsorption of Na⁺ in exchange with K
- Na⁺ : H⁺ exchange will stop.
- Na reabsorption will be in the form of NaCl (not NaHCO₃) which will be excreted in the form of KHCO₃ in urine.
- Cl⁻ will increase in blood leading to hyperchloraemic acidosis
- The blood acidity and urine alkalinity is called "paradoxical acidosis".

Mechanism of metabolic acidosis:

 The ratio of HCO₃⁻ / H₂CO₃ 20:1 becomes disturbed because HCO₃⁻ is decreased and the H₂CO₃ remains as it is, "uncompensated metabolic acidosis" or "acidemia":

> HCO_3^- is low H_2CO_3 is normal pH is decreased

- After that, respiration will be stimulated for CO₂ loss through the lung leading to decrease H₂CO₃: HCO₃⁻ is low H₂CO₃ is decreased
 The ratio will return to 20:1 pH reaches 7.4
 "compensated metabolic acidosis" will be attained, but the alkali reserve is decreased.
- In healthy kidney (not in hyperkalemia), bicarbonate is not excreted through the kidney and Na will be absorbed in the form of NaHCO₃ and alkali reserve is being normal.

Anion gap

- It is the difference between the total amount of certain measured cations and certain measured anions.
- It is calculated as the difference between (Na⁺ + K⁺) which represents 95% of total cations and (HCO₃⁻ + Cl⁻) which represents 86% of total anions. The unmeasured anions constitute the anion gap.
- As sodium is the main extracellular cation, and chloride and bicarbonate are the main anions.
- Normally, it is about 12 mmol/l
- Anion gap = (Na⁺ + K⁺) (Cl⁻ + HCO₃⁻) = 12 mmol/l
 [Na⁺=138 mmol/l, K⁺= 4 mmol/l, Cl⁻ =105 mmol /l, HCO₃⁻=25 mmol/l]

Types:

There are 2 types of anion gap acidosis; normal & high.

High anion gap acidosis: Causes:

Chronic Renal failure: this is due to decreased acid excretion (H⁺) and decreased HCO₃⁻ reabsorption.
 Accumulation of sulfates, phosphates and urate (unmeasured anions).

2. Diabetic ketoacidosis: ↑ketone bodies in lipid metabolism (↑unmeasured anions) and ↑increased anion gap. HCO₃⁻ level decreases to buffer the increased acids. The bicarbonate is consumed by the unmeasured anion (as a buffer) resulting in a high anion gap.

3. Lactic acidosis: due to tissue hypoxia, circulatory failure and intake of biguanides (e.g. Cidophage tablets which contain metformin HCl and can cause lactic acidosis by decreasing glucose production by the liver, accumulates lactic acid).

Normal anion gap acidosis:

- When there is loss of both anions and cations, the anion gap is normal but acidosis may prevail.
- The drop in HCO₃⁻ lost is compensated by Cl⁻ (hyperchloremic acidosis).

Causes:

- **1. Diarrhea:** there is loss of HCO₃⁻, Na⁺ and K⁺.
- 2. Hyperchloremic acidosis: this occurs in;
 - Renal tubular acidosis: Renal loss of HCO₃⁻
 - Intake of carbonic anhydrase inhibitor (acetazolamide)
 - Ureteric transplantation into large gut (as in cancer bladder)
- **3. Addison's disease:** because of reabsorption of NaCl and excretion of KHCO₃

B. Metabolic alkalosis:

It is due to increased blood HCO₃⁻ which results from:

- I. Increased absorption of bases:
- Intake of high vegetable and fruit diets containing big amount of citrate and bicarbonate salts. Citrate salts are transformed through Krebs' cycle into bicarbonate salts
- Intake of drugs containing citrate and bicarbonate salts (anti-acids for treatment of hyperacidity and peptic ulcer).

- II. Increased loss of acids;
- Prolonged suction of gastric juice
- Vomiting due to high intestinal obstruction
- Hypokalemia (Cushing's syndrome):
- \succ there is disturbed Na⁺ and K⁺ exchange in renal tubules.
- \succ Instead, there is Na⁺ and H⁺ exchange.
- \succ Na⁺ is reabsorbed in the form of NaHCO₃ rather than NaCl.
- Cl⁻ will be lost in urine leading to hypochloremia.
- NaHCO₃ in blood causes metabolic alkalosis while ammonium chloride in urine causes urine to be acidic; "paradoxical alkalosis" (blood alkaline and urine acidic).
- Cushing syndrome: sodium and water retention and potassium excretion leading to hypokalemia.

Mechanism of metabolic alkalosis:

- There is increase in HCO₃⁻ while H₂CO₃ is normal. So, the ratio of HCO₃⁻ / H₂CO₃ (20:1) is increased. This is "uncompensated metabolic alkalosis"
- Alkalemia is corrected by respiratory inhibition. This leads to CO₂ retention and H₂CO₃ is increased; so the ratio returns 20:1 again but the alkali reserve is high.
- The kidneys try to keep alkali reserve normal by increasing Na⁺: K⁺ exchange. So, to inhibit Na⁺: H⁺ exchange, the kidneys excrete HCO₃⁻ in the form of KHCO₃ and Cl⁻ will be reabsorbed in the form of NaCl.

- To summarize:
- In metabolic acidosis and alkalosis; the disturbance is in the bicarbonate level while in respiratory acidosis and alkalosis; the disturbance is in the carbonic acid level.
- The normal bicarbonate/carbonic acid ratio is 20/1; if disturbed it is uncompensated acidosis or alkalosis.
- The bicarbonate level is the alkali reserve. In metabolic acidosis it is decreased and in metabolic alkalosis it is increased.
- Correction of alkaline reserve is strictly renal; if increased it is corrected by increased KHCO₃ excretion and increased NaCl reabsorption and if decreased it is corrected by increased NaHCO₃ reabsorption and ammonium chloride excretion.

Uncompensated acidosis & alkalosis

ABG	pН	PaCO ₂	НСО 3
Respiratory Acidosis			normal
Respiratory Alkalosis	1		normal
Metabolic Acidosis		normal	
Metabolic Alkalosis		normal	

Uncompensated acidosis & alkalosis

ABG	pН	PaCO2	НСО 3
Respiratory Acidosis			
Respiratory Alkalosis			
Metabolic Acidosis			
Metabolic Alkalosis			

N.B. ABG: arterial blood gases Violet arrows are for compensation.

